domingo, 26 de abril de 2020

QUANDO SE ADICIONA ALGUM TIPO DE ENERGIA EM UM SISTEMA SE MODIFICA TODO SISTEMA DE TRANSFORMAÇÕES, INTERAÇÕES, DINÂMICAS, POTENCIAIS, ESTADOS QUÂNTICOS, ESTADOS DIMENSIONAIS E FENOMÊNICOS TRANSICIONAIS DE GRACELI, E OUTROS, E CONFORME O SDCTIE  GRACELI..

O ESTADO QUÂNTICO DE GRACELI  É RELATIVO POR SER VARIÁVEL AO SISTEMA SDCTIE GRACELI, E É INDETERMINADO PORQUE EM CADA ESTRUTURA, ENERGIA, DIMENSÃO DE GRACELI, CATEGORIA GRACELI SE TEM INTENSIDADES E VARIAÇÕES ESPECÍFICAS, MESMO ESTANDO TODO DENTRO DE UM SISTEMA SÓ, CORPO, OU PARTÍCULA. 


X



⇔  A FÍSICA DIMENSIONAL GRACELI PODE SER UM BRAÇO DA QUÂNTICA, OU MESMO SER UMA RELATIVIDADE FUNDAMENTADA NUMA TERCEIRA QUANTIZAÇÃO DO SDCTIE GRACELI.

ONDE SE VÊ O MUNDO FÍSICO NÃO APENAS POR QUANTUNS DE MATÉRIA, OU RELAÇÕES DE ONDAS E PARTÍCULAS, MAS NUM MUNDO TRANSCENDENTE E DE INTERAÇÕES E TRANSFORMAÇÕES CONFORME O SDCTIE GRACELI.

OU SEJA, O UNIVERSO DECADIMENSIONAL TRANSCENDENTE DE GRACELI, E NÃO APENAS DE QUANTUNS DE ENERGIAS, OU MESMO DE RELAÇÕES DE ONDAS PARTÍCULAS, OU DE INCERTEZAS.


EM QUE SE FUNDAMENTA EM :




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Há um limite máximo de energia cinética Ecin na qual elétrons fotoemitidos podem ser detectados em espectos oriundos de técnicas de espectroscopia eletrônica. Os elétrons mais energéticos emitidos pela amostra provêm, em acordo com a equação fundamental de fotoemissão, dos níveis com menores energias de ligação ocupados dentro da amostra, e mantêm relação direta com a densidade de estados associada a estes níveis. A energia de limiar de emissão (ET ou EL), muitas vezes chamada de energia de ionização do material (I), [1] refere-se ao módulo da energia dos elétrons mais energéticos detectáveis [2] em espectros de fotoemissão quando ainda não excitados e dentro do sólido, medida em referência ao nível de vácuo.
Outra forma de se definir energia de limiar de fotoemissão é dizer que esta corresponde à mínima energia  que um fóton deve ter para conseguir arrancar elétrons da amostra, produzindo então uma corrente de fotoemissão.
Em semicondutores, onde o número de elétrons na banda de condução é mínimo à temperatura ambiente, não sendo estes detectáveis em espectros de fotoemissão, os elétrons mais energéticos detectáveis correspondem aos elétrons no topo da banda de valência. Em metais, os elétrons mais energéticos têm energias que excedem a energia de Fermi em um valor igual à energia térmica por eles ganha, geralmente aceita, em média, como sendo a metade do valor KB T. Para T = 300K, KBT = 0,025eV, muito aquém da resolução mínima do nosso espectrômetro de fotoelétrons.
Do exposto, define-se o limiar de fotoemissão ET como sendo a soma da eletroafinidade X e a largura da janela de energias proibidas Eg (gap):
ET = X + Eg
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Como em semicondutores a eletroafinidade X localiza a energia EMBC do mínimo da banda de condução em relação à energia de vácuo Ev (ver figura), e a energia Eg corresponde à distância em energia entre o mínimo da banda de condução e o máximo da banda de valência, o limiar de fotoemissão localiza a posição do topo da banda de valência em relação ao nível de vácuo. Em metais, não há faixa proibida acima dos níveis mais energéticos ocupados na banda de valência, pois esta banda encontra-se semipreenchida. Assim sendo, o limiar de fotoemissão corresponde à energia de Fermi do referido metal, dado que X =  nos metais.
Assim:
ET = X + Eg = -EvMBV para semicondutores e isolantes, e
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


ET = X =  para os metais.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS







Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fóton
Algebricamente:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde:
  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • X
  • FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.
Notas:
Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.





espectroscopia de fotoelétrons excitados por raios X ou XPS (do inglês X-ray photoelectron spectroscopy, também conhecida por espectroscopia de elétrons para análise química (ESCA, electron spectroscopy for chemical analysis) ou às vezes por espectroscopia Röntgen de fotoelétrons, é uma técnica experimental de análise que encontra grande aplicação em áreas onde o estudo físico-químico de amostras mostre-se importante. Em especial, é de grande valia em trabalhos na área da física do estado sólido.
Na prática uma técnica de análise de superfície, a espectroscopia XPS fundamenta-se no efeito fotoelétrico, efeito experimentalmente descoberto por Heinrich Hertz em 1887 e teoricamente explicado por Albert Einstein em 1905, explicação teórica que lhe valeu o Prêmio Nobel de Física em 1921. Em essência, esta técnica consiste em se iluminar uma amostra com raios X e em coletar os fotoelétrons por ela emitidos em um analisor de elétrons, dispositivo esse capaz de resolvê-los em função das respectivas velocidades (energias cinéticas) e de, então, contá-los. Um gráfico de contagem de elétrons x velocidade (corrente x energia cinética) é estabelecido por varredura, geralmente através de um mecanismo de coleta de dados automatizado, e um espectro de XPS é obtido.
Os espectros XPS permitem identificar quantitativamente, em profundidades da ordem de dezenas de nanômetros e com incerteza de fração centesimal de camada atômica, todos os elementos químicos na superfície da amostra, suas concentrações relativas, o ambiente químico dos elementos - seus estados de oxidação - e em casos específicos permite inclusive inferir a morfologia da superfície em análise [1]

A Natureza dos Espectros XPS[editar | editar código-fonte]

Espectro XPS para Arsenieto de gálio (100): os pícos salientes devem-se aos elétrons nas camadas eletrônicas indicadas. Todo o espectro se assenta sobre uma base que eleva-se para energias cinéticas menores e devida aos elétros secundários (espalhamento inelástico).
Na Espectroscopia de Fotoelétrons de Raios X, fótons de raios X, ao incidirem na amostra, interagem com os elétrons do material, transferindo-lhes energia. Dos elétrons participantes do processo, uma parcela ganhará energia suficiente e mover-se-á em direção adequada de forma que, ao atingirem a superfície da amostra, estes serão capazes de abandoná-la, ejetando-se para o ambiente externo, normalmente o interior de uma câmara de vácuo. Os elétrons ejetados da amostra podem ser coletados por um analisador de elétrons capaz de contar o número de elétrons que saem da amostra com determinada energia (velocidade) em um dado intervalo de tempo. Os espectros obtidos através deste processo são portanto curvas de Contagem x Energia como a mostrada ao lado. Na figura vêem-se também identificadas algumas estruturas – alguns picos de caroço - que refletem a estrutura de bandas inerente à amostra em análise.
Em função da estrutura de bandas ser individual e diferente para cada elemento químico, cada um dos elementos químicos terá um espectro XPS único e diferente dos demais, podendo os espectros serem facilmente utilizados para se identificar a presença ou não de um dado elemento na superfície da amostra, algo similar a uma impressão digital na mão de um datiloscopista. Uma relação de espectros para todos os elementos químicos conhecidos encontra-se há muito na literatura,[2] e os espectros dos compostos químicos são, ressalvadas características próprias, em primeira aproximação a soma dos espectros individuais para os elementos que compõem a substância ou dos elementos que encontram-se por ventura juntos na superfície da amostra em análise.
Nos espectros há flutuações de naturezas diversas superpostas à resposta ideal. Há uma dispersão em certos casos considerável dos pontos experimentais em torno dos valores ideais esperados devido às interferências aleatórias inerentes à própria natureza do sistema, ou às que ocorrem durante o processo de medida. Um tratamento estatístico torna-se, portanto, indispensável, e para obter-se um espectro como o da figura, a faixa de energia considerada deve ser varrida várias vezes, obtendo-se, assim, vários valores experimentais associados a uma mesma energia. Uma média desses valores é automaticamente realizada pelo software de controle do equipamento de medida - que cuida também do controle das várias varreduras necessárias- e o valor médio é o valor assumido no espectro final - o valor correspondente a cada ponto visto no espectro mostrado. Quanto maior o número de vezes a se varrer uma dada região, maior o número de pontos a participar da média, e menor a dispersão dos pontos médios experimentais ao redor dos valores ideais que seriam obtidos para um número de varreduras “infinito ”.
dispersão dos valores médios experimentais ao redor dos respectivos valores médios ideais, mais especificamente falando, o desvio relativo dos valores em torno da média idealizada, decresce, para incertezas aleatórias como as consideradas, com a raiz quadrada do número de pontos a participar da média.[3] Assim, quanto maior o número de varreduras considerado, mais “lisa” será a curva final obtida no espectro. Em troca, um maior tempo de medida será demandado e, portanto, uma relação de custo benefício deve ser, ai, considerada. Curvas precisas exigem um considerável número de varreduras que podem vir a tomar horas de trabalho.

Obtendo Informações dos Espectros[editar | editar código-fonte]

XPS: análise do pico Ga3d. A análise consiste na remoção dos elétrons secundários - neste caso mediante a remoção por base linear - seguindo do ajuste de uma função analítica sobre os pontos experimentais - no caso uma função gaussiana. Os dados obtidos dos ajustes fornecem as informações físicas procuradas.
Espectros XPS são caracterizados por uma coletânea de pontos que apresentam flutuações características, o que implica, como já citado, em uma dispersão dos pontos experimentais ao redor dos valores ideais. A extração de informações dos espectros XPS exige em uma segunda etapa, mediante o uso de programa de processamento adequado a tal fim,[4] o tratamento e o ajuste estatístico de uma função analítica sobre os dados de cada um dos picos de interesse do espectro, dos quais resultam informações confiáveis e relevantes sobre os valores das áreas, posições e larguras dos picos de interesse. A partir destes resultados é que informações física relevantes serão inferidas.
O primeiro procedimento na análise de um pico consiste na remoção dos “elétrons de fundo”, da base na qual este se assenta. O processo mais simples para a remoção dos elétrons de fundo consiste na extração de uma base linear sob o pico no espectro original, sendo aplicável sempre que a correta identificação das posições de pontos base do pico é possível. Na maioria dos casos que envolvem semicondutores, este é o caso.
O ajuste de uma função analítica pode ser feito empiricamente ou procurando-se razões experimentais e teóricas para escolher-se a função para o ajuste, e neste caso geralmente funções gaussianaslorentzianas, ou em certos casos uma convolução das duas prestam-se bem ao serviço de ajuste aos dados experimentais. Em sua quase totalidade os ajustes destas funções a um mesmo pico fornecem resultados semelhantes para área, posição e largura de cada pico considerado, diferindo os resultados entre os ajustes por valores menores do que as incertezas nos resultados obtidos. Na figura vemos o ajuste do pico Ga3d para um espectro obtido de uma amostra de arseneto de gálio onde depositou-se uma pequena quantidade de césio na superfície. O ajuste é feito mediante uma função gaussiana, e o ajuste por lorentziana fornece resultados bem semelhantes.
uma função gaussiana típica usada na análise de espectros XPS: os parâmetros A0, A1, Xc e W são ajustados pelo programa de análise de forma que a curva ajuste-se da melhor forma possível aos dados experimentais.
Em metais a remoção de uma base linear pode não mostrar-se adequada devido a uma considerável elevação do patamar de elétrons secundários no lado do pico correspondente a menores energias cinéticas, sendo exemplo deste caso o pico Fe3p em espectros de Ferro (figura abaixo, espectro para 150A de Fe). Basicamente as estruturas são simétricas para materiais isolantes e semicondutores, mas não para metais, e um tratamento diferenciado para a remoção dos elétrons secundários faz-se então necessário. Nesse último caso uma função do tipo Doniach-Sunijic ou uma aproximação desta presta-se bem melhor à correta remoção da base formada pelos elétrons secundários e o uso de uma base linear é desencorajado.

Fe sobre GaAs - um exemplo[editar | editar código-fonte]

XPS é uma técnica de análise de superfície: na figura temos uma sequência de espectros tomados durante a gradual deposição de Fe sobre GaAs. Após a deposição de 76 angstroms de Fe sobre a amostra as estruturas ligadas ao substrato (GaAs) não são mais visíveis nos espectros.
sistema que se obtêm fazendo a deposição de Ferro (Fe) sobre arsenieto de gálio [5] (GaAs) é um sistema de grande interesse na área da spintrônica [6] por constituir-se em uma junção entre um material magnético e um semicondutor que pode facilmente funcionar como fonte de corrente spin-polarizada.[7] É um sistema já estudado mediante diversas técnicas de análise incluindo-se a técnica XPS, e uma grande variedade de informações encontra-se disponível na literatura.[8]
A figura ao lado apresenta uma sequência de espectros tomados entre as sucessivas deposições de Fe de alta pureza sobre um cristal semicondutor GaAs (100), encontrando-se na parte inferior o espectro tomado com o GaAs limpo e na parte superior um espectro análogo ao que se obteria para uma amostra de ferro puro, isto após a deposição de apenas 150 Å de ferro na superfície da amostra (Fe cresce epitaxialmente sobre GaAs). XPS é uma técnica de análise de superfície. A análise dos picos principais para cada um dos espectros resulta em tabelas que contém repectivamente informações a respeito das áreas, posições e larguras para cada um dos picos em cada um dos espectros. Analisando estes dados processos tais como a formação de uma estreita camada reagida durante a deposição dos primeiros 8Å de Fe - camada esta contendo um composto químico de Fe e As formado mediante quebra da ligações Ga-As - seguida de uma camada epitaxial de Fe puro crescendo sobre esta camada reagida pode ser inferida dos dados nestas tabelas e dos gráficos construídos a partir das mesmas. A presença de uma camada monoatômica de As constantemente segregada à superfície do Fe que cresce epitaxial sobre a camada reagida também pôde ser detectada até coberturas bem elevadas de ferro, não o sendo somente no último espectro (de ferro puro), que foi tomado após a deposição em única etapa de uma quantidade de ferro equivalente a toda a quantidade antes depositada em 9 etapas sucessivas espassadas por intevalos de aproximadamente duas horas entre entre elas.
Regra geral, a relação entre as áreas dos picos para elementos diferentes encontra-se relacionada à estequiometria destes elementos na camada superficial e os deslocamentos nas posições dos picos - e associadamente as variações nas larguras em energia destes picos - encontram-se associados às mudanças nas ligações químicas (ambiente químico) feitas por cada elemento em questão. Átomos de um mesmo elemento mas em estados de oxidação diferentes darão origem a picos de nível de caroço levemente deslocados para energias cinéticas maiores ou menores dependendo do caso. Se dois destes picos estiverem muito próximos, os mesmos serão entendidos como um único pico com largura maior.
Entretanto mesmo sem análise formal prévia podem ser obtidas informações úteis dos espectros. Não é necessário muito esforço para se perceber a gradual redução e final supressão nas amplitudes dos picos relacionados ao Ga e ao As bem como o surgimento e gradual crescimento até uma final saturação das amplitudes dos picos relacionados ao Fe à medida que este metal é depositado na amostra. Esta observação nos fornece a informação de que Fe cresce puro sobre GaAs ao invés de ir gradualmente reagindo com o mesmo e dissolvendo-o à medida que este metal é depositado, o que seria uma hipótese prévia cogitável uma vez conhecido que Fe tem a capacidade de substituir o Ga nas ligações com o As.

Considerações teóricas[editar | editar código-fonte]

Cristais, fônons e fotoelétrons[editar | editar código-fonte]


Efeito Compton: um fóton é absorvido por um elétron livre em repouso. Um fóton secundário é obrigatoriamente emitido no processo, e o elétron não absorve toda a energia do fóton incidente.
Fotoexcitação de elétron em um cristal: na excitação representada o momento do fóton é desprezível e o mapeamento da transição pode ser visto como uma transição apenas em energia (seta verde) na primeira Zona de Brillouin. O elétron absorve toda a energia do fóton incidente.
A interação entre fótons e elétrons livres é descrita pelo Efeito Compton. No efeito Compton, devido à relação de dispersão dos elétrons livres ser uma função quadrática do momento e a relação de dispersão dos fótons ser uma função linear do momento, para que se tenha a conservação de momento um segundo fóton deve ser obrigatoriamente produzido no processo. A energia antes presente somente no fóton incidente (o elétron é suposto estático por simplicidade) mostra-se após a "colisão" dividida entre a energia do fóton emitido e a energia cinética do elétron ejetado, e não há como o elétron absorver toda a energia do fóton incidente.
Nas técnicas de espectroscopia como XPS e UPS (Espectroscopia de fotoelétrons excitados por ultravioleta) há de forma similar interação de fótons e elétrons, e as conservações da energia e do momento também são satisfeitas. Entretanto os elétrons envolvidos neste processo não são elétrons completamente livres e a estrutura eletrônica em sólidos cristalinos apresenta diversos estados eletrônicos ou ocupados ou vazios de forma que ao leva-la em consideração o processo de fotoemissão é melhor descrito através de um acoplamento entre um dos estados antes ocupados e um estado dos estados antes vazios na estrutura de bandas do material. O estado final (vazio) pode ser um estado com energia total inferior à energia de vácuo - estado ainda na estrutura de bandas discretas do sólido, caso em que o elétron excitado não é portanto ejetado - ou pode ser um estado na região de energia contínua acima da energia de vácuo - caso no qual o elétron liberta-se do sólido, podendo ser então detectado no analisador de elétrons externo à amostra.
A relação de dispersão e estrutura de bandas para os sólidos são consequências diretas da interação entre o elétrons do cristal e o próprio cristal, e no processo de excitação que leva à fotoemissão em sólidos a rede cristalina participa portanto da interação, podendo absorver ou fornecer um fônon caso as conservações de momento e energia assim o exijam. O processo é portanto um pouco diferente do Efeito Compton, e fato relevante é que há a possibilidade da absorção completa do fóton incidente pelo elétron sem a necessidade de emissão de um fóton secundário no processo. Este é em verdade o caso para os fotoelétrons de interesse na espectroscopia de elétrons e o processo pode ser basicamente descrito como uma absorção mediante transferência completa de energia do fóton para o elétron uma vez que os fônons indispensáveis à conservação do momento têm energias desprezíveis quando comparadas às do elétron ou do fóton excitante.
Detalhadamentes técnicos em relevância, quando os fótons excitantes têm momentos desprezíveis quando comparados aos momentos cristalinos dos elétrons no cristal - o que ocorre para fótons em UPS - o fóton basicamente transmite energia para os elétrons. Ao ter a sua energia aumentada o momento do elétron tende a aumentar (E=P2/(2m)), e a conservação do momento só é possível graças à participação da rede no processo mediante o vetor de rede recíproca G. Assim, os estados final e inicial têm, uma vez desconsiderado o momento do fóton, o mesmo momento cristalino (ki=kf-G=kf), e a transição é mapeada na primeira Zona de Brillouin como uma transição apenas em energia (seta verde na figura). Em XPS a energia dos fótons excitantes é muitas ordens de grandeza maior do que em UPS e o momento de um destes fótons não pode mais ser desprezado. A transição neste caso ainda pode ser mapeada na primeira Zona de Brillouin mas não será mais uma transição apenas em energia (vertical), sendo que os estados final e inicial terão momentos cristalinos que diferirão por um valor adequado (ki<>kf-G=kf), o que corresponderia a seta verde contudo um pouco "inclinada" na figura. Na prática não só há a transferência completa de energia do fóton excitante para o elétron como também há a transferência de momento em quantidade adequada para torná-lo um elétron livre uma vez que o estado final não é mais um estado confinado do cristal.
Fato fundamental em ambos os processos é que, uma vez conhecida as características do fóton excitante, sólidas informações a respeito da estrutura interna do sólido em análise podem ser inferidas a partir da análise dos fotoelétrons ejetados uma vez que estes elétrons têm energias e momentos que dependem intimamente das energias e momentos que tinha nos estados que se encontravam antes da excitação. Informações sobre a estrutura de bandas do sólido em análise são assim evidentes nos espectros XPS, a saber os picos de caroço nos espectros.

Energias em Estrutura de Bandas[editar | editar código-fonte]

Energias em estrutura de bandas para sólidos cristalinos: os conceitos de Função Trabalho, Energia de Vácuo, Energia de Fermi e Limiar de Fotoemissão são importantes para a correta compreensão das informações em espectros XPS.
Conforme descrito pela física quântica, sistemas confinados apresentam níveis de energias discretos: em átomos há níveis de energia, e em sólidos assim como os átomos estes níveis se agrupam formando bandas de energia permitidas e bandas de energias proibidas. Para estudar-se os sólidos alguns conceitos importantes sobre energias são definidos em termos desta estrutura de bandas, e tais conceitos são importantes na compreensão dos espectros XPS. A saber tem-se as seguintes definições:
  • Energia de nível de vácuo (Ev): é a energia total mínima que um elétron deve possuir para no limite libertar-se do sólido, tornando-se um elétron livre mas estático nas imediações da amostra, em situação tal que a amostra não consiga mais atraí-lo de volta. Um elétron com energia total maior que a energia de nível de vácuo continuará a se mover mesmo após abandonar a amostra, encontrando-se o excesso de energia em relação à energia de nível de vácuo na forma de energia cinética. Elétrons com energias totais menores que a energia de nível de vácuo estão confinados ao sólido.
  • Eletroafinidade eletrônica (X ou A): considere um sistema constituído por uma amostra neutra e em seu estado de equilíbrio termodinâmico e mais um elétron externo à amostra e com energia total igual à energia de nível de vácuo. A eletroafinidade é a medida da energia liberada quando este elétron é admitido na amostra, tornando-se um elétron confinado ao sólido. No processo o elétron ocupa o estado com a menor energia total disponível no sólido.
  • Energia de Fermi (Ef): a energia de fermi corresponde à energia do último estado eletrônico ocupado em sistemas à temperatura de 0 Kelvin (onde a probabilidade de ocupação de um estado vale ou 1 ou zero). Para sistemas com temperaturas absolutas não nulas uma média das energias de todos os estados afetados pela agitação térmica (com probabilidades de ocupação entre 1 e zero) ponderadas cada qual pela respectiva probabilidade de ocupação do estado associado deve ser feita a fim de se determinar a correta localização da energia de fermi. A energia de fermi é a energia diretamente relacionada ao equilíbrio termodinâmico dos sitemas, sendo a mesma ao longo de todo o sistema em tal estado. Em sistemas constituídos pelo contato de dois materiais condutores as energias de fermi devem ser iguais em ambos os lados da junção a fim de que se tenha o equilíbrio elétrodinâmico, fato que leva ao estabelecimento da diferença de potencial de contato, fator com significativa relevância experimental em espectroscopia. Em virtude dos diversos contatos elétricos que devem ser estabelecidos no equipamento de espectroscopia a fim de fazê-lo funcionar, a energia de fermi é a melhor escolha para a energia de referência em sistemas de espectroscopia de elétrons, sendo geralmente definida como o zero na análise dos resultados obtidos.
  • Função trabalho () : é a energia mínima que se deve fornecer ao sistema a fim de se conseguir remover um elétron do mesmo, estando os sistemas antes e após a remoção em seus respectivos equilíbrios dinâmicos. Corresponde à diferença entre as energias de nível de vácuo e de fermi para o sistema.
  • Energia de ligação (EB): a energia de ligação de um estado quântico eletrônico específico é a diferença das energias totais do sistema quando este estado encontra-se desocupado e ocupado por um elétron, respectivamente. Assume-se que o sistema, mantida a ausência no primeiro caso, já tenha relaxado energeticamente de forma a acomodar-se à ausência do elétron no referido estado, assumindo a configuração que lhe permita então a menor energia total com o referido estado ainda vazio. É uma energia muito importante em espectroscopia, podendo ser referida em relação à energia de nível de vácuo ou à energia de fermi, sendo necessário algum cuidado quanto à referência utilizada ao se considerar dados oriundos da literatura.
  • Energia de limiar de fotoemissão (EL): a energia de limiar de fotoemissãao corresponde à mínima energia que cada um dos fótons excitantes deve ter para conseguir arrancar elétrons da amostra de forma a produzir uma corrente de fotoemissão mensurável. Nos metais à temperatura ambiente esta iguala-se à função trabalho, e em semicondutores corresponde à eletroafinidade somada à energia do gap existente entre a banda de valência e de condução.

Relação fundamental em processos de fotoemissão[editar | editar código-fonte]

Equação Fundamental[editar | editar código-fonte]

Conhecendo as energias anteriormente definidas estamos aptos a compreender a equação fundamental que descreve o processo de fotoemissão. Tal equação fundamenta-se no princípio da conservação da energia e considera que a energia total do sistema inicialmente em equilíbrio somada à energia do fóton incidente deve igualar-se à energia total do sistema em equilíbrio após o elétron ser ejetado, somada à energia necessária para se remover o elétron e à energia cinética deste elétron no vácuo:
Reagrupando os termos acima teremos:
A expressão acima corresponde à equação geral que governa o processo de fotoemissão com a referência de energia tomada necessariamente como a energia de vácuo uma vez que a energia cinética é definida no referencial da amostra e que a energia de ligação relatada também encontra-se referida à energia de vácuo. Alguns problemas práticos surgem ao se considerar um experimento real, entretanto. O primeiro refere-se ao fato que a energia de vácuo acima citada corresponde à energia de vácuo da amostra e não à energia de vácuo do dispositivo realmente responsável por medir a energia cinética dos elétrons, o analisador de elétrons. Isto se deve ao fato de que as funções trabalho do analisador e da amostra não são necessariamente iguais, e, considerando-se que ambos encontram-se eletricamente conectados, uma diferença de potencial de contato existe entre o analisador e a amostra.
A existência deste potencial de contato traz algumas implicações quanto à medida da energia cinética no analisador uma vez que a mesma implica a existência de um campo elétrico na região em vácuo compreendida entre a superfície da amostra e do analisador. Um elétron que, em relação ao nível de vácuo da amostra, possua uma energia cinética Ecin, seria percebido pelo analisador (em relação ao seu próprio nível de vácuo, portanto), como possuindo uma energia cinética dada por Ecin.medida = Ecin - e , onde -e é a carga do elétron e  a diferença de potencial de contato entre a amostra e o analisador (e  =  amostra - analisador). O termo -e referese à energia ganha pelo elétron ao se mover da amostra até o analisador, estando a amostra em um potencial  abaixo do potencial do analisador. A existência da diferença de potencial de contato não seria problema caso esta fosse constante, mas quando se considera que amostras diferentes em análise possuem, cada qual, uma função trabalho diferente, na maioria das vezes previamente desconhecida, um problema real existe.
O problema atrelado ao potencial de contato reside na escolha do referencial de energia e para solucioná-lo basta portanto redefinir a energia de referência para um nível de energia comum tanto à amostra como ao analisador. Este nível de referência é evidente: a Energia de Fermi.
Considerando que a diferença entre o nível de vácuo da amostra e a energia de fermi da mesma é a sua função trabalho , a energia cinética ECINF medida agora em relação ao nível de Fermi pode ser escrita como:
A equação fundamental torna-se então:
 Equação fundamental em processos de fotoemissão:           
Nestas equações, tanto a energia de ligação EBF quanto a energia cinética EcinF referem-se agora à energia de Fermi, e usualmente costuma-se suprimir o "F" nesta expressão. O termo energia cinética neste caso foge, é claro, dos rigores de sua definição clássica e as energias cinéticas e de ligação Ecin e EB usualmente encontradas nas literatura encontram-se geralmente referidas à energia de fermi. Entretanto não são poucos os em que as mesmas encontram-se referidas ao nível de vácuo de forma que alguma atenção quanto a este ponto é sempre requerida ao se consultar as tais informações na literatura.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS











energia de ligação (EB) é um termo normalmente utilizado quando se trabalha com a análise da estrutura eletrônica da matéria (estrutura de bandas), em especial na espectroscopia de elétrons. É comum também em outras, a exemplo na física do estado sólido.
Rigorosamente falando, a energia de ligação de um dado estado quântico eletrônico identificado por s é a diferença das energias totais do sistema quando este estado encontra-se desocupado e ocupado por um elétron, respectivamente. Assume-se que o sistema, mantida a ausência no primeiro caso, já tenha relaxado energeticamente de forma a acomodar-se à ausência do elétron no referido estado, assumindo a configuração que lhe permita então a menor energia total com o referido estado vazio. Sendo EsistemaN-1 a energia total do sistema com a ausência do elétron no referido estado [1] e EtotalN a energia total do sistema com o referido estado preenchido, ou seja, com N elétrons e em seu estado de equilíbrio termodinâmico, temos que:
EB = E N−1 sistema − ENtotal
Em sólidos geralmente utiliza-se como referência para a medida da energia de ligação a energia de Fermi. Entretanto não é incomum encontrar-se dados sobre energias de ligação referidas à energia de nível de vácuo, ou, às vezes, à energia do topo da banda de valência, e certo cuidado deve ser tomado ao se utilizar valores obtidos da literatura.
Devido às dificuldades inerentes na determinação da energia total do sistema, costuma-se assumir aproximações práticas para a energia de ligação. A mais simples consiste em negligenciar a energia envolvida no processo de relaxação do sistema e assumir a energia de ligação como sendo o negativo da energia do estado a partir do qual o elétron é retirado. Esta aproximação, apesar de negligenciar mudanças nos orbitais atômicos do qual o elétron é removido bem como mudanças na distribuição eletrônica do cristal devido à presença de um íon positivo na rede e à ausência de um elétron, mostra-se muitas vezes útil, e é conhecida como aproximação de Koopman.[2]
Tabelas com as energias de ligações para os elementos e vários compostos destes podem ser encontradas na literatura.[3]

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS







diferença de potencial de contato ou Diferença de Potencial de Junção, termo normalmente encontrado em espectroscopia de elétrons e também em outras áreas, refere-se à diferença de potencial associada ao aparecimento de um campo elétrico no exterior de uma amostra constituída pela junção de dois materiais com energias de Fermi diferentes.
Considere a existência de apenas dois corpos diferentes – assumidos condutores por simplicidade mas sem perda de generalidade - bem afastados um do outro. Nesta situação, a condição de equilíbrio impõe que as energias de vácuo para ambos seja a mesma uma vez que não há campo elétrico na região que contém os corpos. Sendo diferentes, as energias de Fermi dos dois corpos não estão no mesmo nível uma vez que os corpos possuem funções trabalho Φ assumidamente diferentes e em tal situação a energia de nível de vácuo é a mesma para os dois. Ao serem colocados em contato, entretanto, as energias de Fermi dos dois corpos devem igualar-se, pois esta é uma condição para o equilíbrio termodinâmico do sistema composto, e para que isto aconteça, cargas elétricas do corpo com maior energia de Fermi fluirão para o corpo que possui menor energia de Fermi. Este fluxo de cargas fará surgir na região da junção dos dois materiais um campo elétrico e a existência deste campo elétrico implicará, de acordo com as leis do eletromagnetismo, na existência de uma diferença de potencial entre os dois corpos. Esta diferença de potencial, conhecida como Diferença de Potencial de Contato em função do processo que a originou, tem seu valor determinado pela diferença nas energias de Fermi dos dois materiais envolvidos, uma vez que sua função é possibilitar o justo nivelamento delas. Assim:
eΘ = Φ1 − Φ 2
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde Φ1 e Φ2 são as funções trabalho dos dois materiais em consideração, “e” a carga elementar e “Θ” a diferença de potencial de contato entre os corpos.
Repare que, ao igualarem-se as energias de Fermi dos dois corpos, o nível de energia de vácuo nos extremos das amostras, assumidas longas, não serão mais os mesmos, pois há agora um campo elétrico no espaço externo aos corpos próximo à região de junção.